Rank-Nullity Theorem (Poole 3.26): If A is a $m \times n$, then

$$\operatorname{rank}(A) + \operatorname{nullity}(A) = n \tag{7}$$

Example 8: Consider the matrix $A = \begin{bmatrix} 2 & 1 & 0 & 2 & -1 \\ 1 & 0 & 1 & 2 & 0 \\ 1 & 0 & 1 & 2 & 0 \\ 2 & 1 & 0 & 2 & -1 \end{bmatrix}$. Calculate rank(A) and nullity(A).

Note 7: Elementary row operations *preserve* the null space of a matrix and thus *preserve* the *nullity* of a matrix.

Corollary 2: If the $m \times n$ matrices A and C are row equivalent then	
$\operatorname{rank}(A) = \operatorname{rank}(C)$	(8)

Proof:

Note 8: Elementary row operations *do not preserve* the column space of a matrix but *do preserve* the *rank* of a matrix.